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The formal method of search of asymptotic integration parameters which makes 
possible a comprehensive classification of all possible variants of simplified 
equations on the basis of the minimal simplification criterion is considered on 

examples of static equations of the theory of elasticity for orthotropic and iso- 
tropic media. The method which is suitable for use on computers provides the 

possibility of operating with a large number of parameters. In the case of 
three-dimensional equations of the theory of elasticity for an isotropic medium 
it is possible to obtain by this method all known (presented earlier in [l] ) vari- 

ants, as well as a number of other. 

One of the effective modern methods of constructing two-dimensional equations of 
the theory of plates and shells on the basis of three-dimensional equations of the theory 
of elasticity is the method of asymptotic integration developed by Gol’denveizer [l]. 

A similar method for deriving simplified equations by rejecting unimportant termscan 
be applied in many other problems. However, its wider use is hampered by the dif- 
ficulty encountered in the search of asymptotic integration parameters. Hence the 
formal search of these parameters, valid in the case of minimal preliminary inform- 
ation about the solution, is of interest. The feasibility of this was shown in [2] on the 
example of the dynamical problem of the thin plate problem in the theory of elastic- 

ity. 

1. To illustrate the problem we begin with the simplest example of the different- 
ial equation 

(1.1) 

of the plane problem of the theory of elasticity for an orthotropic medium [3]. In 
this equation u and u are components of the displacement vector, B1 and B, 
are tension and compression stiffnesses, and G is the shear stiffness. We assume that 

relations B, > B, - G are satisfied. We introduce the small parameter E = B, / 

B, and carry out the transformations 

x* = eax, y* zcz Yi u* = &3U, y* = u (1.2) 

so as to have the relations 
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satisfied. 

a / a-* -aiarp. Il*-v* 

substitution of (1.2) into (1.1) yields the equations 

(1.3) 

&‘a+ a2u* 
dz*” + $-P G azu* -i__ E 1+a 

i 1-11-t-g 1 
i)ac* 

B, ay*2 
~ =o 
&*a,!/* 

aw _ _j_ $czG a%* 
a92 B, az*l -I- fF+ (PI -t ‘&) & = 0 

( 1.4) 

where in conformity with (1.3) the contribution of each term is evaluated by the pow- 
er of E in which it appears in that term. We represent the unknown functions in the 
form of asymptotic series 

u* = i$ Ui*&l, v* = s1 v,*ci-l (1.5) 

As & + 0 we have u* -+ uI*, v* -+ ul* _ Equations for LL~* and V~ * are 
obtained by substituting (1.5) into (1.4) and retaining terms that contain E of the 

lowest power, since these terms remain when E + 0. Selection of these terms sub- 
stantially depends on parameters a and 0. similar parameters are usually chosen 
based on intuitive considerations about the properties of the sought solution of the in- 

put problems. For instance, assuming that the rate of change of unknown functions is 
higher along the r -axis than along the z/ -axis, we select & < 0 and in the op- 

posite case a > 0 ) and when these rates are equal we take a = 0. parameter 

p defines the comparative magnitudes of displacements u and v . Values p < 0 
correspond to the preponderance of v over ZL. p > 0 to that of u over v , and 
fi = 0 to displacements of the same order. 

Such method requires considerable preliminary information about the sought solu- 
tion, and the difficulties of its application increase with the number of parameters. 
The problem is furthermore complicated by the fact that in various cases the solution 

properties and, consequently, parameter values may change, resulting in different 
simplified equations for the same input system. The determination of all such variants 
is highly desirable, since the various simplified equations complement each other, and 
in their totality define (approximately) the range of problems specified by the input 

system of equations. 
Let us formulate the task of investigating all possible values of a and 0 . The 

exponents of E in all terms of the first and second of Eqs. (1.4) are 

2a: - p, 1 - p, 1 + a ( 1. 6) 
0, 2a, a - [3 

Let us consider the afi -plane and construct in it separate zones containing the 
lowest values of exponents in each equation (see Fig. 1). Exponent 2a - p is the 
smallest in the first row of (1.6) for a and p selected from zone. 1.1. Exponents 

1 - @ and 1 + a are the smallest in zones (1.2) and (1.3), respectively. Similar- 
ly, the zero exponent in the second row is the smallest in zone 2.1, and exponents 
201 and a - p are the smallest in zones 2.2 and 2.3, respectively. 
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Let us, first, consider the parameters for which the representing point in the o$ - 
plane is simultaneously inside some zone that corresponds to the first equation and in- 
side one of the zones that correspond to the second equation. We than have in (1.6) 
one minimal exponent in the first row and one in the second, and the equations for 

Ul * and ur* have only one term each, which shows that the input equation is sim- 
plified to the maximum possible extent. Such extreme simplification in the first stage 
is undesirable. Selecting the representing point on the common boundary of two zones 
corresponding to one of the equations diminishes the approximation [accuracy]. The 

first approximation equation then con- 

tains two terms. The minimal simplifica- 

tion obtains when the representing point 

is at the intersection of two boundaries. 

There are four such points, as shown in 

Fig. 1. Of the greatest interest are points 
A and B at which the boundaries sep- 

arating zones of different equations in- 

tersect. 

P 0 in t A (a = 0.5, j3 = 0.5). 
The first approximation equations in 
terms of input variables ate of the form 

Fig. 1 

P o i n t B (a = 0, fi = -_I). The first approximation equations are of the 
form 

B++Gs =O, B,$+(B,pz+ G)a = 0 (1.8) 

These equations were used in [4] and other investigations for solving contact prob- 
lems of the theory of elasticity, as well as for defining the slowly changing with res- 

pect to LF basic state (I. 7) and (1.8) for defining the boundary layer, when consider- 
ing regions with boundaries x = const . 

Of lesser interest are points C and D which define a and p for which all 
terms are retained in one of the equations and only one in the other. 

bet us consider the conclusions that can be drawn from the above simplest example. 
The criterion of selection of specific asymptotic integration parameters from an 

infinite number of variants has been reasonably formulated. At the first stage of in- 

vestigation such parameters are selected so as to obtain a minimal simplication of the 
input system of equations. If only two parameters are involved, the search for these 
can be carried out graphically, as described above. A larger number of parameters 

necessitates the use of analytic methods for their determination. We shall show the 
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essence of such methods using the same two-dimensional example. Let us, first, write 
the equations for the boundaries that separate zones shown in Fig. 1, equating pairwise 
the exponents in the first or second rows in (1.6) and stipulating that the two equal 
exponents must not exceed the third in the same row. As a result, we obtain six 

equations 

a = 0.5, p > -0.5; a = 0, p<0 
a - fi = t, fl kc -0.5; a - p = 0, p a 0 

(1.9) 

afP=O, (3 < -0.5; a i- p = 0, p & 0 

accompanied by inequalities three of which correspond in (1.6) to the first row and 
three to the second. 

To determine the boundary intersection points we solve Eqs. (1.9) in pairs using 
all possible combinations. In this case there are fifteen of these, but part of the 
equation pairs are incompatible because of the accompanying inequalities. There are 

also cases when the same a and /!I are obtained from solutions of different equation 
pairs (for instance, solutions that correspond to points c and D occur three times). 

As a result, we are left with only four different pairs of a and @ which correspond to 

point A, B, C, and D . 
The described analytic method can be readily extended to any arbitrary number 

of parameters. An example of this is presented below. 

2. The absence of some intrinsic small parameter in the input differential equa- 
tions does not prevent the application of the asymptotic analysis methods in which the 
main part is played by transformations of the form (1.2) and (1.3). Such transforma- 

tions can be effected by using as the basis any formally introduced parameter E < 1. 
As an example of the formal small parameter application, we shall consider the 

problem investigated in [1] of the asymptotic integration of static equations of the 
theory of elasticity, using Cartesian coordinates. These equations are of the form 

(2.1) 

and do not contain any intrinsic small parameter. In [l] which was aimed at the 

investigation of the stress-strain state of plates, the plate half-thickness was taken as the 
small parameter. However, in the general application of the results of asymptotic 
integration of Eqs. (2. l), without any specific aim, to the investigation of the stress- 

strain state of plates such dimensional parameter cannot be considered small, since it 
may assume any (including as large as desired) values depending on the scale of the 
problem. Hence we shall use the formally introduced dimensionless small parameter 

E< 1. 
We carry out the transformation 
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and assume that 

a a a a--_a---_a--_] 
&Z* aY* az* 

(2.2) 

(2.3) 
_____ _ =x* ._ Yldl_ 52* lL* V* d c, . _&_$ 

a a a E I:’ E c c c; 

where a is any constant of dimension length required for effecting the comparison of 
various dimensions in (2.3). 

We seek the unknown functions in the form of series 

m 
u* = z ui*ei-1, . . . , zzz = ijl &i-l (2.4) 

i=l 

and follow the procedure used in the previous example for obtaining parameters a,, . 

* -7 czlo that determine the first approximation equations and thee-method of success- 

ive approximations. We substitute (2.2) into (2.1) and, taking into account (2.3). 
evaluate the contribution of each term of the transformed equations by the power of 

E which it acquires as a multiplier. Omitting the presentation of transformed equa- 

tions themselves, we adduce the exponents of E in them tabulated in a form similar 

to (1.6) 

a1 - %, a2 -a9, --a,,; a, - a3, -c%, ---a73 --a3 

0; 
(2.5) 

al - aa, a2 -a,, a2 - a4, -a7, -% -2 

a1 - alot a2, --a,; -a5, --s --a,, -a7 

a2 - a3. al - a4, ---cl,; -a3, aI - a5, --alo; 

- a4, a2-a6, o 

Using all possible combinations we equate pairwise the exponents corresponding 
to each input differential equation, and obtain for parameters cLI, . . ., al0 thirty 
six algebraic equations each of which we supplement by an inequality to conform 

with the condition that any two exponents chosen as equal should not exceed remain- 
ing exponents that correspond to one and the same differential equation. As an ex- 
ample we present the results related to the first row only of (2.5), i. e. to the first 

two of Eqs. (2.1) 

a, - a2 - c&j + CC9 = 0, aa - cc9 + ccl6 < 0 (2.6) 

a1 - a6 +- a,, = 0, - a2 + a9 - a,6 < 0 

a2 - a9 + a10 = 0, --a, + a6 - a;,6 < 0 

. . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . 

a1 - a3 + a6 = 0, --a, + 017 < 0, -016 + a6 < 0 

al - CL3 + a? = 0, a6 - a7 \c 0, -017 + w3 < 0 
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a1 - a3 + CL8 = 0, % - aa < 0, a, - as < 0 
a, -a, = 0 ---a, + a, - a7 < 0, -a7 -t as < 0 

clg - as =- 0. --a, + cc9 - as < 0. a, - ag c< 0 
a7 - a* = 0. --a, i- a3 - cl8 < 0. cqj - a&J :< 0 
. . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . 

Owing to the formal introduction of the small parameter, all Eqs. (2.6) are homo- 
geneous. Hence for the determination of the ten unknown a,, . . ., alo it is neces- 

sary, in conformity with the minimal simplification condition, to choose them from 
these equations in sets of nine instead of ten; the result of this operation is accurate to 
the common multiplier. The multiplier sign is selected so that the inequalities ac- 
companying the equations are satisfied. The obtained solutions are equations of half- 
lines emanating from the coordinate origin of the ten-dimensional parameter space 
a,, * * -1 a,,. 

The problem of finding all variants of minimal simplification of the system of Eqs. 
(2.1) reduces to the determination of all different solutions of all possible sets of nine 
equations drawn out of thirty six equations (2.6). A similar problem was solved on a 

computer using the screening method. Provisions were made in the screening algorithm 

for separating the sets of nine that contained linearly dependent equations from those 
which yielded previously obtained solutions (since different sets of nine equations may 
yield the same solutions). The sets of nine which were incompatible with the accomp- 

anying inequalities were also separated. 

As a result, 192 variants of solutions requiring further analysis were obtained. The 
first step consisted of elimination of parameter sets that led to first approximation 
equations with the number of unknown functions different from the number of equations. 
There were 108 such sets. Among the remaining 84 sets, 15 were rejected because 
they yielded nonzero values for some of the unknown functions not in the first approxi- 
mation, while there were simultaneously sets the same [non-zero] values in the first 
approximation. The last remaining 69 sets were combined in 16 groups of three 
and six sets which yielded first approximation equations which converted into each oth- 

er for any permutation of 2, y, 2. 
Single representatives of each of these groups are tabulated below. 

1 -0.5 
2 -0.5 
3 0.5 
4 0.5 
5 0.5 
6 0.5 
7 0.5 
8 0.5 

-0.5 
-0.5 

0.5 
0.5 
0.5 
0.5 
0.5 

) 0.5 

0 0 -0.5 0.5 0.5 0.5 0.5 0 
--1 ,---i -0.5 -0.5 -0.5 -0.5 -0.5 0 

0 0 0.5 0.5 0.5 0.5 0.5 0 
1 0 0.5 0.5 0.5 -0.5 0.5 0 
1 0 0.5 0.5 0.5 0.5 0.5 0 
1 1 0.5 0.5 0.5 -0.5 0.5 0 
4 1 0.5 0.5 0.5 0.5 0.5 0 
1 1 1.5 0.5 0.5 -0.5 0.5 0 
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9 0.5 0.5 1 1 0.5 

10 0.5 0.5 1 i 1.5 

ii 0.5 0.5 0 0 -0.5 

12 0.5 0.5 0 0 0.5 

i3 0.5 0.5 i i 1.5 

14 0.5 I 0.5 0 2 

15 0.5 1 0.5 0 0 

16 0.5 1 0.5 0 1 

0.5 0.5 0.5 

0.5 0.5 0.5 

-0.5 -0.5 -0.5 

-0.5 -0.5 -0.5 
0.5 0.5 0.5 
0 0 --1 

0 0 -i 

0 0 0 

0.5 i 

0.5 i 

-0.5 0 

-0.5 0 

0.5 0 

-0.5 -0.5 

-0.5 -0.5 

0.5 -0.5 

In any of these [groups] representatives yields first approximation equations that are 

invariant with respect to permutations of IL: and y , it generates two more sets, other- 
wise five sets are generated. 

As previously indicated, parameters a,, . . it alo are obtained with an accuracy 

to the common multiplier. The smallest absolute values of parameters, which enabl- 

es us to split Eqs. (2.1) with respect to integral powers of e after the substitution of 
(2.2) and (2.4) into (2. l), appear in the tabulation. 

Let us examine the obtained results. Variants 1 and 2 lead to equations accord- 
ing to plane and antiplane strains in the X, y -plane. A slower variation of the stress- 

strain state with respect to z than to X and y is a distinctive feature of these, In 
all remaining cases the rate of change with respect to z is higher than with respect to 
X and y. 

Variants 3 -13 correspond to stress-strain states with the same rate of change 
with respect to X and y. The five variants 3 - 7 correspond to the predominance 
of stress-strain states symmetric about the plane z = 0. Of these, variant 3 corres- 
ponds to the state in which u, dominates in all unknown functions, variant 4 shows 
the predominance of U, variant 5 defines the state with equal contributions from 

u and a,, variant 6 relates to the state with simultaneous dominance of u and 

v, and variant 7 indicates the simultaneous dominance of U, V, 0,. 

Variant 6 reduces to the well known equations of the generalized stress-strain 
state. Let us. consider the remaining variants. 

Variant 3. The first approximation equations are of the form 

(2.7) 

which define the stress-strain state of a layer whose face surfaces z = i-h are subjec- - 
ted to stress 0, = 4 smoothly varying (or constant) with respect to X and y . 

Variant 7. First approximation equations are of the form 



932 A. D. Shamrovskii 

q1 - = 
a2 

0, E 2 = CT*1 - v (ux1+ qll) 

G (3 + 2) = Tryl, 2 = 0, 2 = 0 

Integrating these with respect to z with boundary conditions 0, = q, T,, = T,, 

ryz = ‘Gy satisfied at z = h and symmetric conditions at z = -_h, we obtain 
for functions ur and v, the equations 

aall, 1 -v a%, I- v2 z, 
ax2 

+-;i-__2_+Lp~y= -Eh- 
v (1 +v) a!7 -_ 

E as 
(2.9) 

l-v a%, 1 - V-J ry ~+T~+~p&=_~T- v (Ii v) aq 
E ay 

in which the generalized plane@ension] and compression stress states are combined. 
Using for surface stresses the notation (J, = q - w = W we obtain from (2. 9) 

another variant of two-dimensional equations 

z+ 
I- 2v CY411 -+ 1 -=- a+, (I+ v) (I- 2v) r, -- (2.10) 

2(2-v) ag 2(1-v) asay E((1-v) h 

aw 

(i\‘v)h -az 

$+ 
I- 2~ a+, -+ i _=_ an,, (1+ v) (I- 2v) 5 -- 

a(1 -v) as 2(1--v) a2ay E(i-v) h 

aw 
(i&2 ay 

which for T, = zy = 0 and w = 0 become equations of plane strain, i.e. 

the same as the equations for uI and vI in variant 1. 
Without going into the details of variants 4 and 5, we point out that the first of 

these yields equations of the generalized plane stress state; then, with conditionso, = 

Q7 r6,z = T LX, v = T/’ specified at the face z = h (and symmetric conditions at 

2 = 4) I the equation for u1 assumes the form 

1 -V a2u, 1 - v2 z, ~+_~=--_ 
(2.11) 

E h 

Variant 5 corresponds to the generalized simplified plane compression stress state. 
Variants 8 - 12 correspond to the predominance of stress-strain states that are 

antisymmetric relative to the plane 2 = 0. Of these, variant 8 corresponds to the 
predominance of w over the remaining unknown functions, variant 9 to the predom- 

inance of z,, variant 10 defines the state with equal contributions from w and 

T xz, and variants 11 and 12 to the simultaneous predominance of ‘rXz, Zyz and 

w, T,~, 7yz , respectively. 
Variant 8 was investigated in Cl]; it reduces to the classic equations of plate bend- 

ing. Let us consider the remaining variants. 

Variant Il. The first approximation equations are of the form 

(2.12) 
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%J*l -= 
a.2 0, E 2 = 0~1 - v (~1 + uzl) 

ar %/zl +-+ay +%=O, E~=uzl-v((o,l+o,l) 

G(% + -$) = T,~~, G 2 = ,cxzl, Gz = ‘tyzl 

that define the stress-strain state of layer .z = +h subjected to smoothly changing - 
(or constant) tangential stresses z, = z,, ~~~ = zy, i.e. to shear. 

Variant 22. The first approximation equations are of the form 

(2.13) 

They define the stress-strain state under combined bending and shear. If only the first 
approximation is taken into consideration, nontrivial results are obtained when condi- 

tions a, = Q, u = U, v = V are specified for the plane z = h (and anti- 
symmetric conditions for 2 = --h). After integration with respect to z , we 

obtain for wr the equation 
(2.14) 

when q=o and U=V=O, we obtain from (2.14) an equation which 

coincides with the equation for wr of variant 2, i.e., we have the equation of anti- 
plane strain. 

Omitting the detailed examination of variants 9 and 10, we point out that the 

former corresponds to simplified shear and the latter to simplified bending with 
shear. The indicated antisymmetric stress-strain state in variant 9 combines with the 

symmetric state of the same order which corresponds to variant 7. 

Variant 13 is a combination of variants 7 and 8. 
The last three variants 14 - 16 correspond to stress-strain states with a higherrate 

of change with respect to r than to y, which is characteristic for boundary layers. 

It can be said that variant 14 compared with the previously described variants indicat- 
es the predominance of the cylindrical bending stress-strain state, while variant 15 

corresponds to a combination of the generalized one-dimensional plane stress state and 
of cylindrical bending with shear. Variant 16 represents the combination of generaliz- 
-ed one-dimensional plane compression stress state and of cylindrical bending. 

Let us consider variant 14 in more detail. For it the first approximation equa- 
tions are of the form 

0, E 2 = U,I - V~,I (2.15) 
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GFl$ 1 +av, =z 
ax xy17 z++$=O, G(~+$)=T~~~ 

whose integration with respect to z and with boundary conditions 0, = q, ‘c,, = ‘t,, 

ryz = ry satisfied at z = h (and antisymmetric at z = --h) yields for wr 
the equation 

Ifat z=h ayz = Ty is specified instead of u = VT, we have 

Eh3 a4w, &I+ 
3 (1 - ~2) axi --GhT -q+h%+G$ 

(2.16) 

(2. 17) 

This equation defines the combination of classic bending along the x -axis and 

bending with shear along the y -axis. 
The examples considered here show that an automated search of asymptotic integra- 

tion parameters enables us to find a reasonably complete set of simplified equations 
that complement each other. 

We note in conclusion that the problem of constructing a complete set of simplified 
equations cannot be formalized to the end, since much depends on the selection of 

the form of input equations and of suitable small parameters. However, after com- 
pletion of preliminary work, the search of simplified equations can be automated us- 

ing the proposed method. The combination of the substantial and formal approaches 

makes possible the analysis of highly complex systems of equations, with the basic 

volume of work carried out on a computer. 
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